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(Received 6 September 1995)

1. 

In a recent article, a theory for dynamic analysis of elastic structures subjected to moving
mass load was developed [1]. The solution technique is based on the modified generalized
finite integral transforms and the modified Struble’s method. While the development is
interesting, the concluding remarks drawn based on the very limited set of analysis results
are inconclusive and may be misleading. For dynamic analysis of elastic structures
traversed by moving mass load, the effects of two important parameters, the moving speed
and the mass ratio between the moving load and the support structure, must be closely
examined to extract useful information and to establish sound conclusions from the
analytical work. This examination is absent in [1], which results in misleading conclusions
due to insufficient analysis information. This concern will be addressed in the next section
of this letter.

The claim of the developed theory being applicable to the analysis of thick beams by
including the rotary inertia term is also questionable. As is well known, the shear effect
cannot be neglected for accurate analysis of thick beam structures. It has been shown that
the correction due to shear can be more than three times larger than the correction due
to rotary inertia for computing natural frequencies of a beam with rectangular
cross-section [2]. Hence, the inclusion of the rotary inertia term only may not yield accurate
analysis results for thick beams. Note that the radius of gyration term is incorrectly given
in Eq. (2.1). The term H2 should be H2

2 instead. It is worth noting that, as presented in
Figure 4, while the consideration of rotary inertia effect for beam with H2 =0·031 has little
improvement in analysis accuracy when compared to the classical Bernoulli–Euler beam
theory, the applicability of the Rayleigh beam theory for analysis of a beam with H2 =8
is to be challenged. A radius of gyration so large corresponds to the situation of thickness
to length ratio being equal to 4·619 for a beam with rectangular cross section! The validity
of the Rayleigh beam theory for this case needs to be established first by comparing the
analysis results with those obtained using higher dimensional theory or experimental work,
otherwise the results shown in Figure 4 are imaginary and do not represent the physical
facts. Some investigations [3–6] have been made to validate the Timoshenko beam theory,
which not only includes the rotary inertia term, but also considers the shearing
deformations. However, applicability of the theory for a beam with such a high thickness
to length ratio has not been established.

2. 

The recent development of finite element techniques for dynamic analysis of elastic
structures traversed by moving loads is not appropriately discussed in [1]. In fact, the
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differences between the moving force and the moving mass problems can be easily
identified using the finite element approach. The moving mass problem can be conveniently
analyzed by applying the approach as shown in the work by Lin and Trethewey [7], where
a general treatment of moving load problems was presented. The general equation of
motion developed in [7] can be easily reduced to a form suitable for dynamic analysis of
elastic structures traversed by moving mass load. The governing equation of motion can
be written as:

[[M]+ [m*]]{d� }+[[C]+ [c*]]{d� }+[[K]+ [k*]]{d}= 6N7T mg, (1)

where [M], [C], and [K] are the structural mass, damping, and stiffness matrices
respectively. m is the mass of the moving load and g is the gravitational constant. 6N7T

is the transposition of the shape functions evaluated at the position of the moving load.
{d}, {d� }, and {d� }, denote the nodal displacement, velocity, and acceleration vectors
respectively. And

[m]*=m6N7T6N7, [c]*=2mẋ6N7T6N7x , (2, 3)

[k]*=mẋ26N7T6N7xx +mẍ6NT76N7x . (4)

in which x is the longitudinal co-ordinate. A subscript denotes differentiation with respect
to space and an overdot represents differentiation with respect to time. Note that if the
effects of shearing deformations and rotary inertia are to be considered, the appropriate
forms for the structural matrices, as developed in [8], can be applied. Apparently, the
qualitative differences between the moving mass and the moving force problems is that
the moving mass problem involves the time and space dependent moving sub-matrices
[m*], [c*], and [k*], in addition to the external moving force shown in the right side of
equation (1). Therefore, if the effects of the moving sub-matrices are small, the simple
moving force problem will be a good approximation to the complicated moving mass
problem. This situation occurs when the mass of the moving mass load is relatively small
in comparison with the mass of the support structure, and the velocity and acceleration
of the moving load are low.

To demonstrate the inappropriate conclusions drawn in [1], the quantitative analysis
results obtained from both the moving mass and the moving force problems are presented
subsequently. In Figure 1 are shown the normalized dynamic displacements at the moving
load position for a simply supported beam under various moving loads with a constant
speed. The abscissa denotes the normalized position of the moving load, in which t is the
time required for the moving load to across the beam span. The moving speed parameter
Tf/t is 1, where Tf is the fundamental period of the simply supported beam. For b=0·01,
where b denotes the mass ratio between the moving load and the support beam, there is
little deviation between the moving mass and the moving force analysis results. Significant
deviation is observed as the mass ratio is increased. For the case of higher mass ratios,
the peak responses tend to get closer to the right end of the support beam and the
normalized magnitudes become lower. This may lead to a misconception that a higher
mass ratio results in less dynamic impact on the support structure. On the contrary, as
illustrated in Figure 2 where the normalized dynamic displacements at the beam center are
plotted, the case with a higher mass ratio results in significantly larger dynamic impact
on the support structure than that with a lower one. It is worth noting that while the
response of the beam traversed by a moving force is primarily due to the contribution of
the fundamental mode [2], the response of the beam excited by a moving mass with a high
mass ratio, e.g. b=5, clearly demonstrates the significant participation of higher modes.
The free response is found to be of greater interest than the forces response. While response
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Figure 1. Normalized dynamic displacements at the moving load position for a simply supported beam under
various moving loads with a constant speed, Tf/t=1. ——, moving force, b: · · ·, 0·01; - - - -, 0·1; – – – –, 1·0;
— — —, 5·0; — - - —, 10·0.

analysis at the moving load position may be useful for high speed machining applications,
such as ballistic machining, it not only does not accurately represent the severity of impact
of the moving load on the support structure, but also may result in misleading conclusions.
The concluding remarks about the response amplitude of a simply supported
Bernoulli–Euler beam for the moving mass problem being less than that for the moving
force problem, as made in [1], do not hold good in general. A similar analysis can also
be conducted for the case of a support beam with fixed-fixed ends and the case of a support
plate.

Another important issue to be addressed concerning the moving load problems is the
effect of the moving speed, which is absent in [1]. In Figure 3, the maximum dynamic
displacements at the beam center normalized by the corresponding maximum static

Figure 2. Normalized dynamic displacements at the beam center for a simply supported beam under various
moving loads with a constant speed, Tf/t=1. Key as Figure 1.
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Figure 3. Normalized maximum dynamic displacements at the beam center for a simply supported beam under
various moving loads. Key as Figure 1.

displacements are plotted against the moving speed parameter, Tf/t. Note that in
determining the maximum dynamic displacements, the free response region must be taken
into account since vibration of the support beam may be more severe in this region than
in that of the forced vibration for the case of a moving load with a high mass ratio.
Evidently, there are not many differences between the moving mass and moving force
problems when the moving speed is very low or when the mass ratio is small, e.g., b=0·01.
With the increase of moving load speed, the dynamic impact on the support structure
increases, reaches a maximum, and then decreases. The response curves become more
irregular for higher mass ratios. The quantitative results presented here agree with the
qualitative assessment made previously.

3. 

Dynamic response of elastic structures traversed by moving mass loads is a very
complicated function of both the mass ratio between the moving mass and the support
structure and the speed of the moving load. Any analysis of moving load problems must
address fully the effects of these parameters to extract useful information for engineering
design and to avoid possible misleading conclusions. For the case of low moving speed
or low mass ratio, the simple moving force model can be a good approximation to the
complex moving mass problems. For the case of a high mass ratio and a high moving
speed, the moving force model cannot be applied and the complicated time-variant system
analysis for the moving mass problems must be conducted to ensure an accurate
investigation. For thick beam analysis, both the effects of shearing deformations and
rotary inertia should be considered for accurate analysis. The range of applicability of this
advanced beam theory should be carefully scrutinized to avoid its misuse.
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The authors appreciate the interest shown in the commented manuscript by Professor Lin.
His criticism centers mainly on the numerical analysis (and in particular on the concluding
remarks drawn from the analysis) presented in section 6 of the article. The criticism is
based on the following few points:

(1) The claim made on p. 694 of the paper [1] namely, ‘‘This technique is applicable
to . . . , as well as both thin and thick beams’’, by including the rotatory inertia term, is
questionable.

(2) The concluding remarks drawn from the numerical analysis may be misleading as
they are based on few numerical results.

(3) The numerical analysis in which a radius of gyration H2 =8 (whose thickness
to length radius equals 4·619) is used and whose result is presented in Figure 4 of [1]
is to be challenged, as the applicability of the theory for a beam with such high thickness
to length ratio has not been established. Also the radius of gyration term in equation (2.1)
of reference [1] is not correct. In fact, the term H2 should be H2

2.

The author’s reactions (responses) are trivial and are as follows:

(a) The technique developed is, indeed, applicable to Bernoulli–Euler beams, Rayleigh
beams and Timoshenko (thick) beams. The commented article gives a detailed account
of the applicability of the technique to the first two types of beams. The corresponding
detailed account for Timoshenko beams is reported in [2].

To demonstrate the applicability of the technique to Timoshenko beams, a brief
qualitative analysis presented in [2] is hereby given.

The coupled equations for the deflection y(x, t) and the bending slope F(x, t) of a
uniform Timoshenko beam are given as [3].

KAG(f,x − y,xx )+ rAy,tt =P(x, t), EIf,xx −KAG(f− y,x )− rIf,tt =0 (1, 2)

in which E=modulus of elasticity, G=modulus of rigidity, I=moment of inertia of
the cross-section, A=cross-sectional area, r=mass per unit volume, K=numerical
shape factor for cross-section, t=time, x=the position co-ordinate in the axial
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direction, P(x, t)= the applied moving load. Subscripts following a comma denote partial
differentiation. Any of the following classical boundary conditions

Hinged y(x, t)=0=f,x (x, t), Clamped y(x, t)=0=f(x, t) (3)

may be considered.
The associated initial conditions are:

y(x, 0)=0= y,t (x, 0), f(x, 0)=0=f,t (x, 0) (4)
To solve the above initial boundary value problem (1)–(4), reference [1] is followed and

thereby the following generalized finite integral transforms are introduced:

ȳ(m, t)=g
L

0

y(x, t)ym (x) dx; y(x, t)= s
a

m=1

rA
Gm

ȳ(m, t)ym (x) (5a)

f�(m, t)=g
L

0

f(x, t)fm(x) dx; f(x, t)= s
a

m=1

rA
Fm

f�(m, t)fm (x), m=1, 2, 3, . . . ,

(5b)
where

Gm =g
L

0

rAy2
m(x) dx; Fm =g

L

0

rAf2
m(x) dx,

ym (x)=Am cosh lmx+Bm sinh lmx+Cm cos bmx+Pm sin bmx,

fm (x)=Dm cosh lmx+Em sinh lmx+Hm cos bmx+Qm sin bmx

are the mth normal modes [2] of a uniform Timoshenko beam of length L. The constants
Am , Bm , . . . , Qm are related as follows;

Am =(1/dg)[1− d 2q2(g2 + u2)]Dm , Bm =(1/dg)[1− d 2q2(g2 + u2)]Em ,

Cm =−(1/do)[1+ d 2q2(o2 − u2)]Hm , Pm =−(1/do)[1+ d 2q2(o2 − u2)]Qm ,

where

d 2 = rAv2
m/EI, q2 =EI/KAG, u2 = I/A, vm =the circular frequency,

g

o
=(1/z2)[3(u2 + q2)+ [(u2 − q2)2 +4/d 2]1/2]1/2,

and it is assumed that

[(u2 − q2)2 +4/d 2]1/2 q (u2 + q2).

The value of the constants lm and bm are obtained by using the relevant boundary
conditions.

Upon applying the generalized finite integral transform (5a), equation (1) becomes

rAȳ,tt (m, t)+ rAv2ȳ(m, t)−KAGg1(t)− kAGg2(t)=P�(m, t), (6)

where

g1(t)= s
a

k=1

rA
Gk

D1(m, k)ȳ(k, t), g2(t)= s
a

k=1

rA
Fk

D2(m, k)f�(k, t),

D1(m, k)=g
L

0 $dfm (x)
dx % yk (x) dx, D2(m, k)=g

L

0 $dym (x)
dx %fk (x) dx
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and P�(m, t) is the generalized integral transform of the moving load P(x, t). On the
other hand, applying the generalized finite integral transform (5b), equation (2) reduces
to

rIf� ,tt (m, t)+ rIv2f�(m, t)+KAGg1(t)+KAGg2(t)=0. (7)

It should be noted, at this juncture, that each of equations (6) and (7) is similar to either
equation (3.5) or (3.6) of reference [1]. In particular each of them is coupled. Thus, each of
them could be solved using arguments similar to those in [1]. In other words, they could
be solved (see [2]) by resorting to the approximate analytical method which is a
modification of the asymptotic method due to Struble [1]. Hence, the technique developed
in [1] is also applicable to thick beams.

(b) It should be pointed out, at this juncture, that the manuscript subject to comment
presents a new analytical technique developed for the dynamic analysis of finite elastic
Rayleigh beams and compares it with existing techniques applied to numerically identical
models taking, for the purpose of comparison, the mass ratio per unit length to be 0·2
and speed v=6 m/s as in [4–7]. This numerical analysis (based on these two values
and of course, values of other specified parameters) yields results, from which certain
observations, which were summarised as part of the concluding remarks, were made.
It is interesting to note that Professor Lin’s numerical results for the mass ratio chosen
in [1] agree with the findings in the latter. Besides, a whole section is devoted to a
qualitative discussion of the critical speeds (apart from the speed v=6 m/s). As a matter
of fact, it was known to the authors [7–9] that for different values of mass ratio and speed
the behaviour of the moving load problem is different and hence lead to different
concluding remarks.

Consequently, the authors welcome the extension of the numerical analysis in [1]
involving the consideration of the values of some other mass ratios and speeds, provided
by Professor Lin, as well as the resulting concluding remarks.

(c) The term H2 in equation (2.1) of reference [1] is correct. In other words, it should
not be H2

2. Nevertheless, to the author’s regret, some mistakes exist which went unnoticed
in the article subject to comment. These are (i) the phrase ‘‘H2 is the radius of gyration
of the cross-section’’ (see p. 678, third paragraph, 8th line of [1]) has to be either ‘‘H2 is
the rotatory inertia term’’ (as correctly stated on p. 693, 694) or ‘‘H2 is the square of radius
of gyration of the cross-section’’ and (ii) ‘‘a radius of gyration of the cross-section
H2 =0·03096 m’’ of p. 690 section 6, line 2 should read ‘‘the rotatory inertia term
H2 =0·03096 m2’’. The authors request the readers’ pardon. As a matter of fact, while
dealing with H2 =8 m2 in Figure 4, one had in mind a radius of gyration whose value is
2·8 m.

Finally, it is interesting to note that, in general, Professor Lin’s article agrees with [1]
in the sense that a moving force problem is an approximation to a moving mass problem
and that the former replaces the latter only under certain conditions. Furthermore similar
qualitative differences between the moving force and moving mass problems stated in his
article can also be deduced from equation (2.1) of [1].
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